Math 352 Real Analysis Final

Instructions: Submit your work on any 5.

1. If
$$f: (0,1) \to \mathbb{R}$$
 is uniformly continuous, show that $\lim_{x \to 0^+} f(x)$ exists.

[20 pts]

2. Fix $y \in \ell_{\infty}$ and define $g: \ell_1 \to \ell_1$ by $g(x) = \{x_n y_n\}_{n=1}^{\infty}$. Show that g is uniformly continuous. [20 pts]

3. In any metric space, show that every open set is an F_{σ} and that every closed set is a G_{δ} . [20 pts]

4. Is there a dense open subset of \mathbb{R} with uncountable complement? Explain. [20 pts]

5. Let $f_n : \mathbb{R} \to \mathbb{R}$ be continuous, and suppose that $\{f_n\}$ converges uniformly on \mathbb{Q} . Show that $\{f_n\}$ actually converges uniformly on all of \mathbb{R} . [20 pts]

6. If $\sum_{n=1}^{\infty} |a_n| < \infty$, prove that $\sum_{n=1}^{\infty} a_n \sin nx$ and $\sum_{n=1}^{\infty} a_n \cos nx$ are uniformly convergent on \mathbb{R} . [20 pts]

7. Suppose that $f \in B[a, b]$. If $\bigvee_{a+\epsilon}^{b} f \leq M$ for all $\epsilon > 0$, does it follow that f is of bounded variation on [a, b]? Is $\bigvee_{a}^{b} f \leq M$? If not, what additional hypotheses on f would make this so? [20 pts]

8. If *f* has a continuous derivative on [a, b], and *P* is any partition of [a, b], show that $V(f, P) \le \int_a^b |f'(t)| dt$. Hence, $\bigvee_a^b f \le \int_a^b |f'(t)| dt$. [20 pts]

9. If f is continuous on [1, n], compute $\int_{1}^{n} f(x)d[x]$, where [x] is the greatest integer in x. What is $\int_{1}^{t} f(x)d[x]$ if t is not an integer? [20 pts]

10. If
$$\int_{a}^{b} f d\alpha = 0$$
 for every $f \in C[a, b]$, show that α is constant. [20 pts]

11. Show that
$$\cap \{\mathcal{R}_{\alpha}[a, b]: \alpha \text{ increasing}\} = C[a, b]$$
 [20 pts]